
113 Class Problems: Groups and Homomorphisms

1. Let G = {a, b} come equipped with the binary operation:

∗ : G×G → G

(a, a) $→ a

(a, b) $→ a

(b, a) $→ b

(b, b) $→ b

Is (G, ∗) a group? Carefully justify your answer.

Solution:

2. Let R+ = {x ∈ R|x > 0}. Prove that (R+,×) is a group. Prove that (R,+) and (R+,×)
are isomorphic.

Solution:
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3. Let G be a group and y ∈ G. Prove that the map

φ : G → G

x #→ y−1 ∗ x ∗ y

is an isomorphism. An isomorphism from a group to itself is an automorphism.

Solution:

4. Let G be a group and Aut(G) be the set of all automorphisms of G. Observe that the
composition of two automorphisms is again an automorphism. Prove that composition
of functions makes Aut(G) a group. Hint: the hard part is showing the inverse map of
an automorphism is again an automorphism.

Solution:
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